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ABSTRACT
The fractional Radon transform defined, based on the Fourier slice
theorem and the fractional Fourier transform, has many potential
applications in optics and the pattern-recognition field. Here we
study many properties of the fractional Radon transform using exist-
ing theory of the regular Radon transform: the inversion formulas,
stability estimates, uniqueness and reconstruction for a local data
problem, and a range description. Also, we define the fractional
exponential Radon transform and present its inversion.
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1. Introduction

The fractional Fourier transform was first introduced in the 1980s in a purely abstract
way as a novel method of solving the Schrödinger equation under various conditions
[1,2]. However, this fractional Fourier transform had not brought much attention until
Mendlovic and Ozaktas physically interpreted it with relation to quadratic graded-index
media (GRINmedia) in [3]. After that,many properties and optical implementations of the
fractional Fourier transform were studied in [4–10]. (In [10], the authors called the frac-
tional Fourier transform the Radon–Wigner transform and showed its many applications
in optics.) Recently, application to image reconstruction in MRI was suggested in [11].

The Radon transform is also a promising tool in optical signal-processing systems and is
very related to the Fourier transform.Using the Fourier slice theorem, the two-dimensional
fractional Radon transform was first introduced by Zalevsky and Mendlovic [12] in 1996.
They mentioned its basic properties such as linearity, rotation invariance, shift, and the
Fourier slice theorem, and itsmany applications in optics as well as the pattern-recognition
field. In particular, in [13] its possible applications were illustrated: the minimization of
the mean-square error obtained after filtering non-stationary signals is directly related to
the fractional Radon transform. In [14], the n-dimensional fractional Radon transform
was introduced and its inversion formula was derived. Here we study many properties
of the fractional Radon transform using the existing results for the regular Radon trans-
form (see, e.g. [15–17]). Also, we introduce the fractional X-ray transform and present its
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924 S. MOON

inversion formula and stability estimates. Lastly, we introduce the fractional exponential
Radon transform and derive its inversion.

In Section 2, we briefly introduce the fractional Fourier transform of order α and its
basic properties. In Section 3, the fractional Radon and X-ray transforms are defined and
their elementary properties are studied. Section 3.1 is devoted to the inversion formulas
which is similar to that for the regular Radon and X-ray transforms in [17, Theorems 2.1,
2.2, and 2.3 in Chapter II]. In Section 3.2, we show that taking a certain linear operator
on the fractional Radon transform is an isometry on the new space with the defined norm
based on the fractional Fourier transform and discuss stability estimates. In Section 3.3, we
study the uniqueness and reconstruction for a limited data and describe the range condi-
tions. Section 4 is devoted to the introduction and inversion of the fractional exponential
Radon transform.

2. Preliminary

For α ∈ R and an integrable function f, the fractional Fourier transformFαf of f of order
α is defined by

Fαf (ξ) =

⎧⎪⎪⎨
⎪⎪⎩

(Cα)n
∫

Rn
ei2

−1(|ξ |2+|x|2) cotα−iξ ·x cscαf (x) dx if α is not a multiple of π ,

f (ξ) if α is a multiple of 2π ,
f (−ξ) if α + π is a multiple of 2π ,

(2.1)
where

Cα =
(
1 − i cotα

2π

)1/2
.

Clearly,Fπ/2f = F f is the regular Fourier transform of f. Many properties of the fractional
Fourier transform were introduced in [1,4,7–9]:

• Linearity: Fα[c1f1(x) + c2f2(x)](ξ ) = c1Fαf1(ξ) + c2Fαf2(ξ).
• Inverse: F−αFαf = f .
• Parseval identity:

∫
Rn

f (x)[g(x)]−dx =
∫

Rn
Fαf (ξ)[Fαg(ξ)]−dξ , (2.2)

where z− is the complex conjugate of the complex number z.

Notice that

(Cα)−nFαf (ξ) = (2π)n/2 ei2
−1|ξ |2 cotαF[ei2

−1|x|2 cotαf (x)](ξ cscα). (2.3)

Let S(Rn) be the Schwartz space consisting of C∞ functions which, together with all their
partial derivatives, vanish at infinity faster than any power of |x|.

Theorem 2.1 (Theorem 3.1 in [1]): The fractional Fourier transform Fα is homeomor-
phism on the Schwartz space S(Rn) with inverse F−α .
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INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS 925

3. The fractional Radon and X-ray transforms

For 0 < |α| < π , we define the fractional Radon transform Rα and the fractional X-ray
transform Xα by

Rαf (eθ , s) =
∫
e⊥
θ

f (seθ + τ ) ei2
−1|τ |2 cotα dτ

=
∫

Rn
f (x) ei2

−1(|x|2−s2) cotαδ(eθ · x − s) dx, (3.1)

where δ is the one-dimensional distribution function [14] and eθ ∈ Sn−1 is the unit vector,
and

Xαf (eθ , y) =
∫

R

f (τeθ + y) ei2
−1|τ |2 cotαdτ , for y ∈ e⊥θ .

When α = π/2, Rαf and Xαf are the regular Radon and X-ray transforms, respectively.
Notice that Rαf is even, i.e. Rαf (eθ , s) = Rαf (−eθ ,−s) and

Rαf (eθ , s) = e−i2−1s2 cotαR(ei2
−1|x|2 cotαf (x))(eθ , s), (3.2)

Xαf (eθ , y) = e−i2−1|y|2 cotαX(ei2
−1|x|2 cotαf (x))(eθ , y). (3.3)

Also, we have for any eθ ∈ Sn−1 with eθ ⊥ eω,

Rαf (eω, s) =
∫
y∈e⊥

θ
,y·eω=s

Xαf (eθ , y) dy,

like the regular Radon and X-ray transforms (see [17, Equation(1.1) on the p.10]).

Theorem 3.1: For f ∈ S(Rn) and 0 < |α| < π , we have

Fα,s(Rαf )(eθ , σ) = (Cα)1−nFαf (σeθ ),

Fα,y(Xαf )(eθ , η) = (Cα)−1Fαf (η), η ∈ e⊥θ ,

where Fα,s and Fα,y are the one-dimensional and n−1-dimensional fractional Fourier
transform operators with respect to the variable s and y, respectively.

In fact, the fractional Radon transform was defined based on Theorem 3.1 [12,14].

Proof: Taking the fractional Fourier transform of Rαf with respect to s, we have

Fα,s(Rαf )(eθ , σ) = Cα

∫
Rn

ei2
−1(σ 2+|x|2) cotα−ix·eθσ cscαf (x) dx.

Definition (2.1) of the fractional Fourier transform of f completes our proof.
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926 S. MOON

Similarly, we have

Fα,y(Xαf )(eθ , η) = Cn−1
α

∫
e⊥
θ

ei2
−1(|η|2+|y|2) cotα−iη·y cscαXαf (τeθ + y) dy

= Cn−1
α

∫
e⊥
θ

ei2
−1(|η|2+|y|2) cotα−iη·y cscα

∫
R

f (τeθ + y) ei2
−1|τ |2 cotα dτ dy

= Cn−1
α

∫
Rn

ei2
−1(|η|2+|x|2) cotα−iη·x cscαf (x) dx,

where in the last line, we changed the variables x = y + τeθ so that |x|2 = |y|2 + |τ |2.
Again, definition (2.1) completes our proof. �

If f ∈ S(Rn), then ei2
−1|x|2 cotαf ∈ S(Rn) and thus Rαf is in the Schwartz class on

Sn−1 × R defined by restricting the functions in S(Rn+1) to Sn−1 × R.
Now we introduce the backprojection operators R#

α and X#
α by

R#αg(x) =
∫
Sn−1

g(eθ , x · eθ ) e−i2−1(|x|2−(eθ ·x)2) cotα dS(eθ ),

X#
αg(x) =

∫
Sn−1

g(eθ ,Eeθ (x)) e
−i2−1(eθ ·x)2 cotα dS(eθ ).

for g ∈ C∞(Sn−1 × R) or g ∈ C∞(T) with compact support. Here T = {(eθ , y) : eθ ∈
Sn−1, y ∈ e⊥θ }, Eeθ is the orthogonal projection on e⊥θ and dS(eθ ) is the standard area mea-
sure on the unit sphere in Rn. Then R#α and X#

α are the dual operators to Rα and Xα ,
respectively. In fact, for g ∈ C∞(Sn−1 × R) and f ∈ C∞(Rn) with compact support, we
have ∫

R

∫
Sn−1

g(eθ , s)[Rαf (eθ , s)]−dS(eθ ) ds

=
∫

R

∫
Sn−1

g(eθ , s)
∫

Rn
[f (x)]−e−i2−1(|x|2−s2) cotαδ(eθ · x − s) dx dS(eθ ) ds

=
∫

Rn
R#αg(x)[f (x)]

−dx,

where z− is the complex conjugate of the complex number z, again. Similarly, we can show
∫
Sn−1

∫
e⊥
θ

g(eθ , y)[Xαf (eθ , y)]−dy dS(eθ ) =
∫

Rn
X#

αg(x)[f (x)]
−dx.

Notice that

R#αg(x) = e−i2−1|x|2 cotαR#(ei2
−1s2 cotαg)(x), (3.4)

X#
αg(x) = e−i2−1|x|2 cotαX#(ei2

−1|y|2 cotαg)(x), (3.5)

where R# = R#π/2 and X# = X#
π/2 are the backprojection operators of the regular Radon

and X-ray transforms, respectively.
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INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS 927

Proposition 3.2: For g ∈ S(Sn−1 × R) and 0 < |α| < π , we have

Fα(R#αg)(ξ) = (Cα)1−n|ξ |1−n
(
Fα,sg

(
ξ

|ξ | , |ξ |
)

+ Fα,sg
(

− ξ

|ξ | ,−|ξ |
))

.

This proof is similar to the proof of Theorem 1.4 in Chapter 1 in [17].

3.1. Inversion formulas

For γ < n, we define the linear operator Iγα by

Fα(Iγα f )(ξ) = |ξ |−γFαf (ξ). (3.6)

For f ∈ S(Rn),Fα(Iγα f )(ξ) = |ξ |−γFαf (ξ) ∈ L1(Rn), hence Iγα f makes sense.When α =
π/2, Iγπ/2 = Iγ is the regular Riesz potential.

Lemma 3.3: Let f ∈ S(Rn) and 0 < |α| < π . For γ < n, we have

|cscα|γ Iγ (ei2
−1|x|2 cotαf )(x) = ei2

−1|x|2 cotαIγα f (x).

Proof: Taking the Fourier transform of Iγ (ei2
−1|x|2 cotαf )(x) yields

F[|cscα|γ Iγ (ei2
−1|x|2 cotαf )](ξ cscα) = |ξ |−γF[ei2

−1|x|2 cotαf ](ξ cscα)

= (2π)−n/2(Cα)−n e−i2−1|ξ |2 cotα|ξ |−γFαf (ξ)

= (2π)−n/2(Cα)−n e−i2−1|ξ |2 cotαFα[Iγα f (x)](ξ)

= F[ei2
−1|x|2 cotαIγα f (x)](ξ cscα),

where in the second and fourth equalities, we used the identity (2.3). �

Theorem 3.4: Let f ∈ S(Rn) and 0 < |α| < π . For γ < n, we have

f (x) = 2−1(2π)1−n|cscα|n−1[I−γ
α R#αI

γ−n+1
α (Rαf )](x), (3.7)

f (x) = (2π)−1

|Sn−2| |cscα|[I−γ
α X#

αI
γ−1
α (Xαf )](x). (3.8)

When γ = 0, (3.7) becomes

f (x) = 2−1(2π)1−n|cscα|n−1R#α[I
−n+1
α (Rαf )](x)

= (2π)−n|cscα|n
∫

R

∫ ∞

0

∫
Sn−1

(Rαf )(eθ , s)σ n−1

× ei2
−1(s2−|x|2) cotα−iσ(s−x·eθ ) cscαdS(eθ ) dσ ds,

which is equivalent to (33) derived in [14].

Proof: We notice that for γ < n,

f (x) = 2−1(2π)1−nI−γR#Iγ−n+1Rf (x) (3.9)
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928 S. MOON

(see [17, Theorem 2.1 in Chapter II]). Together with (3.2), we have

f (x) = 2−1(2π)1−n e−i2−1|x|2 cotαI−γ [R#Iγ−n+1(ei2
−1s2 cotαRαf )](x). (3.10)

By Lemma 3.3 and (3.4), we have

f (x) = 2−1(2π)1−n|cscα|−γ+n−1 e−i2−1|x|2 cotα[I−γR#ei2
−1s2 cotαIγ−n+1

α (Rαf )](x)

= 2−1(2π)1−n|cscα|−γ+n−1 e−i2−1|x|2 cotα[I−γ ei2
−1|x|2 cotαR#αI

γ−n+1
α (Rαf )](x)

= 2−1(2π)1−n|cscα|n−1[I−γ
α R#αI

γ−n+1
α (Rαf )](x).

For the second inversion formula, we do the above process with (3.3), (3.5), and

f (x) = (2π)−1

|Sn−2| [I
−γX#Iγ−1(Xf )](x) (see [17, Theorem 2.1 in Chapter II])

instead of (3.2), (3.4) and (3.9), respectively. �

From the inversion formula in Theorem 3.4, we obtain the following version of the
Plancherel formula:

∫
Rn

f (x)[g(x)]−dx = |cscα|n−1

2(2π)n−1

∫
Rn

R#αI
1−n(Rαf )(x)[g(x)]−dx

= |cscα|n−1

2(2π)n−1

∫
Sn−1

∫
R

I1−n(Rαf )(eθ , s)[Rαg(eθ , s)]−ds dS(eθ ).

Here in the last line, we used the definition of R#
α and the such formula for the regular

Radon transform is derived in [16]. Similarly, we obtain
∫

Rn
f (x)[g(x)]−dx = (2π)−1

|Sn−2| |cscα|
∫

Rn
X#

αI
−1(Xαf )(x)[g(x)]−dx

= (2π)−1

|Sn−2| |cscα|
∫
Sn−1

∫
e⊥
θ

I−1(Xαf )(eθ , y)[Xαg(eθ , y)]−dy dS(eθ ).

From (3.10) with γ = 0 and I1−n = (−1)(n−1)/2�(n−1)/2, we have the following obser-
vation: For n odd, the problem of reconstructing a function from the fractional Radon
transform is still local, like the regular Radon transform case. Here ‘local’ means that the
function is determined at a point by the fractional Radon transform on a neighbourhood
of that point.

Let us expand f and gα = Rαf in spherical harmonics:

f (x) =
∞∑
l=0

N(n,l)∑
k=0

flk(|x|)Ylk(x/|x|), gα(eθ , s) =
∞∑
l=0

N(n,l)∑
k=0

gα,lk(s)Ylk(eθ ),

where N(n, l) = (2l + n − 2)(n + l − 3)!/l!(n − 2)!, N(n, 0) = 1, and Ylk(eθ ) is the
spherical harmonics. For the regular Radon transform (i.e. α = π/2), we know the
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INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS 929

relations between flk and gπ/2,lk (see [17, Theorems 2.2 and 2.3 in Chapter II]):

gπ/2,lk(s) = |Sn−2|
∫ ∞

s
C(n−2)/2
l

( s
r

)(
1 − s2

r2

)(n−3)/2

flk(r)rn−2 dr,

flk(r) = c(n)
∫ ∞

r
C(n−2)/2
l

( s
r

)
(s2 − r2)(n−3)/2∂n−1

s glk(s)ds,

where Cλ
l , λ > −1/2, are the Gegenbauer polynomials of degree l and

c(n) = (−1)n−1

2πn/2
�((n − 2)/2)

�(n − 2)
, c(2) = −π−1.

Together with (3.2), we have the following inversions:

Theorem 3.5: Let f ∈ C∞(Rn) have compact support and 0 < |α| < π . Then we have

gα,lk(s) = |Sn−2| e−i2−1s2 cotα
∫ ∞

s
C(n−2)/2
l

( s
r

) (
1 − s2

r2

)(n−3)/2

ei2
−1r2 cotαflk(r)rn−2 dr,

flk(r) = c(n) e−i2−1r2 cotα
∫ ∞

r
C(n−2)/2
l

( s
r

)
(s2 − r2)(n−3)/2∂n−1

s [ei2
−1s2 cotαgα,lk](s) ds.

3.2. Isometry and stability estimates

Let L2(Rn) and L2(Sn−1 × R) be the regular L2-spaces. For γ ≥ 0, let Hγ
α (Rn) = {f ∈

L2(Rn) : ‖f ‖α,γ < ∞} and Hγ
α (Sn−1 × R) = {g ∈ L2(Sn−1 × R) : ‖g‖α,γ < ∞} be the

collections of L2-functions bounded by the following norms:

‖f ‖2α,γ =
∫

Rn
|Fαf (ξ)|2(1 + |ξ |2)γ dξ ,

‖g‖2α,γ =
∫
Sn−1

∫
R

|Fα,sg(eθ , σ)|2(1 + |σ |2)γ dσ dS(eθ ).
(3.11)

In particular, ‖ · ‖α,0 is the regular L2-norm by Parseval identity (2.2) and ‖ · ‖π/2,γ is the
regular Sobolev norm.

Let f ∈ Hγ
α (Rn). Then Fαf is a L2-function with weight (1 + |ξ |2)γ . Thus there is a

sequence f̄n ∈ S(Rn) such that ‖F−α f̄n − f ‖α,γ goes to zero. Set fn = F−α f̄n. Then fn ∈
S(Rn) by Theorem 2.1 and ‖fn − f ‖α,γ goes to zero. Thus S(Rn) is dense inHγ

α (Rn)with
respect to ‖f ‖α,γ .

Also, Hγ
α (Rn) and Hγ

α (Sn−1 × R) are Hilbert spaces. In particular, H0
α(Rn) and

H0
α(Sn−1 × R) are the regular L2 spaces and Hγ

π/2(R
n) and Hγ

π/2(S
n−1 × R) become the

regular Sobolev spaces.

Theorem 3.6: For γ ≥ 0 and 0 < |α| < π , the mapping f → I−(n−1)/2
α Rαf extends to an

isometry of Hγ
α (Rn) into Hγ

α,e(Sn−1 × R), where Hγ
α,e(Sn−1 × R) = {g ∈ Hγ

α (Sn−1 × R) :
g(eθ , s) = g(−eθ ,−s)}.
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930 S. MOON

Proof: For f ∈ S(Rn), we start with ‖f ‖2α,γ :

‖f ‖2α,γ =
∫

Rn
|Fαf (ξ)|2(1 + |ξ |)γ dξ =

∫
Sn−1

∫ ∞

0
|Fαf (σeθ )|2(1 + σ 2)γ σ n−1 dσ dS(eθ )

= 2−1
∫
Sn−1

∫
R

|Fαf (σeθ )|2(1 + |σ |2)γ |σ |n−1 dσ dS(eθ )

= 2−1|Cα|2(n−1)
∫
Sn−1

∫
R

|Fα,s(Rαf )(eθ , σ)|2(1 + |σ |2)γ |σ |n−1 dσ dS(eθ )

= 2−1|Cα|2(n−1)‖I−(n−1)/2
α Rαf ‖2α,γ , (3.12)

where in the second equality, we changed the variables ξ → σeθ and in the fourth equality,
we used Theorem 3.1. It remains to prove that the mapping is surjective. It is enough to
show that if g ∈ Hγ

α,e(Sn−1 × R) satisfies

∫
Sn−1

∫
R

Fα,sg(eθ , σ)Fα,s[I−(n−1)/2
α Rαf ](eθ , σ)(1 + |σ |2)γ dσ dS(eθ ) = 0

for all f ∈ S(Rn), then g=0. By Theorem 3.1, we have

0 =
∫
Sn−1

∫
R

Fα,sg(eθ , σ)|σ |(n−1)/2Fαf (σeθ )(1 + |σ |2)γ dσ dS(eθ )

=
∫
Sn−1

∫ ∞

0
Fα,sg(eθ , σ)|σ |(n−1)/2Fαf (σeθ )(1 + |σ |2)γ dσ dS(eθ ),

since Fα,sg is even by the evenness of g. Changing the variables σeθ → ξ , we have

0 =
∫

Rn−1
Fα,sg

(
ξ

|ξ | , |ξ |
)

|ξ |−(n−1)/2Fαf (ξ)(1 + |ξ |2)γ dξ .

Since f ∈ S(Rn) is arbitrary, by Theorem 2.1 Fα,sg(ξ/|ξ |, |ξ |)|ξ |−(n−1)/2 is equal to
zero almost everywhere and thus Fα,sg(ξ/|ξ |, |ξ |) and g are equal to zero almost
everywhere. �

Corollary 3.7: For γ ≥ 0, 0 < |α| < π , and f ∈ S(Rn), we have

‖f ‖α,γ ≤ 2−1/2|Cα|n−1‖Rαf ‖α,γ+(n−1)/2.

This corollary follows from (3.12) and two definitions (3.6) and (3.11) of Iγα and ‖ · ‖α,γ .

Theorem 3.8: Let f ∈ L2(Rn) have compact support in the unit ball. For γ ≥ 0 and 0 <

|α| < π , there is a constant Cα,γ ,n such that ‖Rαf ‖α,γ+(n−1)/2 ≤ Cα,γ ,n‖f ‖α,γ .
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INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS 931

Proof: Similar to (3.12), we have

‖Rαf ‖2α,γ+(n−1)/2 = 2|Cα|2(1−n)
∫

Rn
|Fαf (ξ)|2(1 + |ξ |2)γ+(n−1)/2|ξ |1−n dξ

= 2|Cα|2(1−n)
∫

|ξ |≥1
+

∫
|ξ |≤1

|Fαf (ξ)|2(1 + |ξ |2)γ+(n−1)/2|ξ |1−n dξ .

(3.13)

The first term is bounded by 2(n+1)/2|Cα|2(1−n)‖f ‖2α,γ , since |ξ |2 ≥ 2−1(1 + |ξ |2). Since

|Fαf (ξ)| ≤ |Cα|
∫

|x|<1
|f (x)|dx ≤ |Cα||Sn−1|1/2‖f ‖α,0 ≤ |Cα||Sn−1|1/2‖f ‖α,γ ,

where in the second inequality, we used the Hölder inequality and the Parseval iden-
tity (2.2), the second term is estimated by∫

|ξ |≤1
|Fαf (ξ)|2(1 + |ξ |2)γ+(n−1)/2|ξ |1−n dξ

≤ |Cα|2|Sn−1|
(∫

|ξ |≤1
(1 + |ξ |2)γ+(n−1)/2|ξ |1−ndξ

)
‖f ‖2α,γ . �

For γ ≥ 0 and T = {(eθ , y) : eθ ∈ Sn−1, y ∈ e⊥θ }, let Hγ
α (T) be the collections of L2-

functions bounded by the following norm:

‖g‖2α,γ =
∫
Sn−1

∫
e⊥
θ

Fα,yg(eθ , η)|2(1 + |η|2)γ dη dS(eθ ).

Theorem 3.9: For each γ ≥ 0 and 0 < |α| < π , there exist positive constants cα,γ ,n and
Cα,γ ,n such that for f ∈ C∞(Rn) with compact support in the unit ball,

cα,γ ,n‖f ‖α,γ ≤ ‖Xαf ‖α,γ+1/2 ≤ Cα,γ ,n‖f ‖α,γ .

Proof: We obtain

‖Xαf ‖2α,γ =
∫
Sn−1

∫
e⊥
θ

|Fα,y(Xαf )(eθ , η)|2(1 + |η|2)γ dη dS(eθ )

= (Cα)−2
∫
Sn−1

∫
e⊥
θ

|Fαf (η)|2(1 + |η|2)γ dη dS(eθ )

= (Cα)−2|Sn−2|
∫

Rn
|Fαf (ξ)|2(1 + |ξ |2)γ |ξ |−1 dx

= (Cα)−2|Sn−2‖|I1/2f ‖2α,γ , (3.14)

where in the last line, we used the following equality: (please see [17, Equation (2.8) on
the p.190]) ∫

Sn−1

∫
e⊥
θ

f (y) dy deθ = |Sn−2|
∫

Rn
|x|−1f (x) dx.

From here on we proceed exactly in the same way in the proof of Theorem 5.1 in [17] . �
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932 S. MOON

3.3. The partial data problems and range description

Like the regular Radon transform, we have the following support theorem, which follows
from Theorem 3.5.

Corollary 3.10: Let f ∈ C∞(Rn) have compact support and 0 < |α| < π . If Rαf (eθ , s) = 0
for |s| > M, then f (x) = 0 for |x| > M.

Combining (3.2) and Theorem 3.4 in Chapter II in [17], we have the following theorem
which similar to Theorem 3.4 in Chapter II in [17].

Proposition 3.11: Let 0 < |α| < π and A ⊂ Sn−1 be a set of directions such that no non-
trivial homogeneous polynomial vanishes on A. If f ∈ C∞(Rn) with compact support and
Rαf (eθ , s) = 0 for eθ ∈ A, then f=0.

Nowwe study the reconstruction problem for limited data similar to [15]. Let E ⊂ Sn−1

be the open set symmetric with respect to the origin.We define the wedges and the projec-
tion operator by wE := R · E = {σeθ : eθ ∈ E, σ ∈ R} and PE,αf = F−α(χwEFαf ). Here
χwE is the characteristic function of a set wE.

Theorem 3.12: Let f ∈ C∞(Rn) have compact support and 0 < |α| < π . We have

PE,αf (x) = 2−1(2π)1−n|cscα|n−1I−γ
α [R#αI

γ−n+1
α (Rα,Ef )](x),

where Rα,Ef (eθ , s) = χE(eθ )Rαf (eθ , s).

Proof: By Theorem 3.1, we have

Fα(IγαPE,αf )(ξ) = |ξ |−γ χwE(ξ)Fαf (ξ)

= (Cα)n−1|ξ |−γ χE

(
ξ

|ξ |
)
Fα(Rαf )

(
ξ

|ξ | , |ξ |
)

= (Cα)n−1|ξ |−γFα(Rα,Ef )
(

ξ

|ξ | , |ξ |
)
. (3.15)

Together with the inverse fractional Fourier transform, we have

IγαPE,αf (x) = (C−α)n
∫

Rn
Fα(PE,αIγα f )(ξ) e−i2−1(|x|2+|ξ |2) cotα+ix·ξ cscα dξ

= (C−α)n
∫
Sn−1

∫ ∞

0
Fα(PE,αIγα f )(σeθ ) e

−i2−1(|x|2+σ 2) cotα+ix·σeθ cscα|σ |n−1 dσ dS(eθ ),

where in the last line, we changed the variables ξ → σeθ . Now the integrated function
is even with respect to (σ , eθ ), that is, H(σ , eθ ) = H(−σ ,−eθ ) when H is the integrated
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INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS 933

function. Since for an even function H,
∫
Sn−1

∫ ∞

0
H(σ , eθ ) dσ dS(eθ ) =

∫
Sn−1

∫ 0

−∞
H(−σ ,−eθ ) dσ dS(eθ ),

we have

IγαPE,αf (x)

= 2−1(C−α)n
∫
Sn−1

∫
R

Fα(PE,αIγα f )(σeθ ) e
−i2−1(|x|2+σ 2) cotα+ix·σeθ cscα|σ |n−1 dσ dS(eθ )

= 2−1(C−α)n(Cα)n−1
∫
Sn−1

∫
R

|σ |−γ+n−1Fα(Rα,Ef )(eθ , σ)

× e−i2−1(|x|2+σ 2) cotα+ix·σeθ cscα dσ dS(eθ )

= 2−1(2π)1−n|cscα|n−1
∫
Sn−1

Iγ−n+1
α (Rα,Ef )(eθ , x · eθ ) e−i2−1(|x|2−(x·eθ )2) cotα dS(eθ ),

where in the third line, we used (3.15). �

Now we describe the range of the fractional Radon transform using the range descrip-
tion of the regular Radon transform.

Theorem 3.13: Let f ∈ S(Rn) and 0 < |α| < π . If g ∈ S(Sn−1 × R) be even (i.e.
g(eθ , s) = g(−eθ ,−s)), then for m = 0, 1, 2, . . .,

∫
R

ei2
−1s2 cotαRαf (eθ , s)sm ds

is a homogeneous polynomials of degree m. Also, if for each m = 0, 1, 2, . . . ,
∫

R

ei2
−1s2 cotαg(eθ , s)sm ds

is a homogeneous polynomials of degree m, then there is f ∈ S(Rn) such that g = Rαf .

Proof: We compute
∫

R

ei2
−1s2 cotαRαf (eθ , s)sm ds =

∫
R

∫
e⊥
θ

f (seθ + τ ) ei2
−1(|τ |2+s2) cotαsm dτ ds

=
∫

Rn
f (x) ei2

−1|x|2 cotα(x · eθ )m dx,

where we put x = seθ + τ .
On the other hand, by the range description of the regular Radon transform R derived

in [17, Theorem 4.2 in Chapter II], there is F ∈ S(Rn) such that ei2
−1s2 cotαg = RF. Setting

f (x) = e−i2−1|x|2 cotαF(x) gives f ∈ S(Rn) and ei2
−1s2 cotαg(eθ , s) = R[ei2−1|x|2 cotαf (x)]

(eθ , s) which is equivalent to g = Rαf by (3.2). �
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934 S. MOON

4. The fractional exponential Radon transform

For f ∈ S(R2) with compact support, the exponential Radon transform is defined by

Tμf (eθ , s) =
∫

R2
eμx·e

⊥
θ f (x)δ(x · eθ − s) dx =

∫
R

eμτ f (seθ + τe⊥θ ) dτ ,

where θ is the polar angle of the unit vector eθ ∈ S1, that is, eθ = (cos θ , sin θ), and
e⊥θ = (− sin θ , cos θ) and μ is a constant. Similar to definition (3.1) of the fractional
Radon transform, we can define the fractional exponential Radon transform Tμ,αf ,
0 < |α| < π by

Tμ,αf (eθ , s) =
∫
e⊥θ

f (seθ + τe⊥θ ) ei2
−1(|τ |2−μ2) cotα eμτ cscα dτ

=
∫

R2
f (x) ei2

−1(|x|2−s2−μ2) cotαδ(eθ · x − s) eμx·e
⊥
θ cscα dx.

Like Tμf , Tμ,αf is not even. Also, we notice that Tμf = Tμ,π/2f and

Tμ,αf (eθ , s) = e−i2−1(s2+μ2) cotαTμ cscα(ei2
−1|x|2 cotαf (x))(eθ , s). (4.1)

Now we have the analogue of the Fourier slice theorem:

Theorem 4.1: For f ∈ S(R2) with compact support and 0 < |α| < π , we have

Fα,s(Tμ,αf )(eθ , σ) = (Cα)−1Fαf (σeθ + iμe⊥θ ).

Proof: Taking the fractional Fourier transform of Tμ,αf with respect to s, we have

Fα,s(Tμ,αf )(eθ , σ) = Cα

∫
R

ei2
−1(σ 2+s2) cotα−isσ cscα

∫
R2

f (x) ei2
−1(|x|2−s2−μ2) cotα

× eμx·e
⊥
θ cscαδ(eθ · x − s) dx ds

= Cα

∫
R2

ei2
−1(σ 2−μ2+|x|2) cotα−ix·eθ σ cscα eμx·e

⊥
θ cscαf (x) dx

= (Cα)−1Fαf (σeθ + iμe⊥θ ). �

In fact, the fractional exponential Radon transform is defined based on Theorem 4.1 as
the fractional Radon transform is defined using Theorem 3.1.

4.1. Inversion formula

To obtain the inversion formula for the fractional exponential Radon transform, we
introduce the dual operator T#

μ,α , defined by

T#
μ,αg(x) =

∫
S1
e−i2−1(|x|2−(x·eθ )2−μ2) cotα eμx·e

⊥
θ cscαg(eθ , x · eθ ) dS(eθ ).
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INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS 935

Then by simple computation, we can easily show
∫

R

∫
S1
Tμ,αf (eθ , s)[g(eθ , s)]−dS(eθ ) ds =

∫
R2

f (x)[T#
μ,αg(x)]

−dx.

Also, like (3.4), we have

T#
μ,αg(x) = e−i2−1(|x|−μ2) cotαT#

μ cscα(ei2
−1s2 cotαg)(x),

where T#
μ = T#

μ,π/2 is the dual operator to Tμ,π/2 = Tμ.

Theorem 4.2: Let f ∈ S(R2) with compact support and 0 < |α| < π . For γ < 2, we have

f (x) = (4π)−1|cscα|I−γ
α T#

−μ,α[I
γ−1
α,μ Tμ,αf (eθ , s)](x), (4.2)

where I−γ
α,μ is the generalized Riesz potential

Fα(I−γ
α,μh)(σ ) =

{|σ |(σ 2 − μ2)(γ−1)/2Fαh(σ ), |σ | > |μ|,
0, otherwise.

When α = π/2 and γ = 0, (4.2) becomes the inversion formula for the exponential
Radon transform which is the same as the formula derived in [17, Theorem 6.1 in Chapter
II]. To prove this theorem, we need the following lemma:

Lemma 4.3: Let h : C → C be an analytic function with h(z) = h(z + 2π). Then we have
for a constant b ∈ R ∫ 2π

0
h(θ) dθ =

∫ 2π

0
h(θ + ib) dθ .

Proof: By Cauchy’s integral theorem we have
∫
C
h(z) dz = 0, (4.3)

where C is a simple closed curve in C. Let us define C : [0, 4] → C by

C(λ) =

⎧⎪⎪⎨
⎪⎪⎩

2πλ if 0 < λ < 1,
2π + b(λ − 1)i if 1 < λ < 2,
2π(3 − λ) + bi if 2 < λ < 3,
b(4 − λ)i if 3 < λ < 4.

By 2π-periodicity of h, we have
∫
C[1,2]

h(z) dz = bi
∫ 2

1
h(2π + b(λ − 1)i) dλ = bi

∫ 4

3
h(b(4 − λ)i) dλ

= −
∫
C[3,4]

h(z) dz.
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936 S. MOON

Together with (4.3), we have
∫ 1

0
h(2πλ) dλ = (2π)−1

∫
C[0,1]

h(z) dz = −(2π)−1,

∫
C[2,3]

h(z) dz =
∫ 3

2
h(2π(3 − λ) + bi) dλ,

which is equivalent to our assertion. �

Now we are ready to prove Theorem 4.2.

Proof of Theorem 4.2: Let us start with the inverse fractional Fourier transform:

Iγα f (x) = (C−α)2
∫

R2
|ξ |−γFαf (ξ) eiξ ·x cscα e−i2−1(|x|2+|ξ |2) cotα dξ

= (C−α)2
∫ ∞

0

∫
S1
Fαf (σeθ ) eiσeθ ·x cscα e−i2−1(|x|2+σ 2) cotασ 1−γ dS(eθ ) dσ ,

where in the last line, we changed the variables ξ → σeθ . As in the proof of Theorem 3.12,
an integrand function is even with respect to (σ , eθ ) and thus we have

Iγα f (x) = 2−1(C−α)2
∫

R

∫
S1
Fαf (σeθ ) eiσeθ ·x cscα e−i2−1(|x|2+σ 2) cotα|σ |1−γ dS(eθ ) dσ

= 2−1(C−α)2
∫

|σ |>|μ|

∫
S1
Fαf (

√
σ 2 − μ2eθ ) ei

√
σ 2−μ2eθ ·x cscα

× e−i2−1(|x|2+σ 2−μ2) cotα|σ |(σ 2 − μ2)−γ /2 dS(eθ ) dσ , (4.4)

where in the last line, we changed the variables σ →
√

σ 2 − μ2. Let φσ ,μ =
(i/2) ln[(σ + μ)/(σ − μ)]. Applying Lemma 4.3 to (4.4) and Theorem 4.1, Iγα f (x)
becomes to be equal to

2−1(C−α)2
∫

|σ |>|μ|

∫
S1
Fαf ((

√
σ 2 − μ2eθ+φσ ,μ) ei

√
σ 2−μ2eθ+φσ ,μ ·x cscα

× e−i2−1(|x|2+σ 2−μ2) cotα|σ |(σ 2 − μ2)−γ /2 dS(eθ ) dσ

= C−α

4π | sinα|
∫
S1

∫
|σ |>|μ|

Fα,s(Tμ,αf )(eθ , σ) eiσeθ ·x cscα−μx·e⊥θ cscα

× e−i2−1(|x|2+σ 2−μ2) cotα|σ |(σ 2 − μ2)−γ /2 dσ dS(eθ ), (4.5)

since
√

σ 2 − μ2(cos(θ + φσ ,μ), sin(θ + φσ ,μ)) = σeθ + iμe⊥θ . By the definition of I−γ
α,μ,

(4.5) becomes

Iγα f (x) = (4π)−1|cscα|
∫
S1
Iγ−1
α,μ Tμ,αf (eθ , eθ · x)

e−i2−1(|x|2−(eθ ·x)2−μ2) cotα e−μx·e⊥θ cscα dS(eθ ). �
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INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS 937

4.2. Stability estimates

In this subsection, we show that the problem of reconstructing from the fractional expo-
nential Radon transform is well-posed in the following sense: if f satisfying g = Tμ,αf
is uniquely determined for any g belonging to a certain space, the function f depends
continuously on g.

Theorem 4.4: For γ ≥ 0, 0 < |α| < π , and f ∈ S(R2), we have

‖f ‖α,γ ≤ |Cα|‖Tμ,αf ‖α,γ+1/2.

When α = π/2, we get the stability estimate of the regular exponential Radon
transform.

Proof: Notice that from Theorem 4.1, we have

Fα,s(Tμ,αf )(eθ ,
√

σ 2 + μ2) = (Cα)−1Fαf (
√

σ 2 + μ2eθ + iμe⊥θ )

= (Cα)−1Fαf (σeθ+φ√
σ2+μ2,μ

), (4.6)

where φ√
σ 2+μ2,μ = (i/2) ln[(

√
σ 2 + μ2 + μ)/(

√
σ
2 + μ2 − μ)] = (i/2) ln[σ/(σ 2 +

2μ2 − 2μ
√

σ 2 + μ2)].
Similar to (3.12), let us consider ‖f ‖2α,γ :

‖f ‖2α,γ =
∫ 2π

0

∫ ∞

0
|Fαf (σeθ+φ√

σ2+μ2,μ
)|2(1 + |σ |2)γ |σ | dσ dθ

= |Cα|2
∫ 2π

0

∫ ∞

0
|Fα,s(Tμ,αf )(eθ ,

√
σ 2 + μ2)|2(1 + |σ |2)γ |σ | dσ dθ

= |Cα|2
∫ 2π

0

∫ ∞

|μ|
|Fα,s(Tμ,αf )(eθ , σ)|2(1 + |

√
σ 2 − μ2|2)γ |σ | dσ dθ

≤ |Cα|2
∫ 2π

0

∫
R

|Fα,s(Tμ,αf )(eθ , σ)|2(1 + |σ |2)γ+1/2 dσ dθ

= |Cα|2‖Tμ,αf ‖2α,γ+1/2,

where in the first and second lines, we used Lemma 4.3 and (4.6), respectively, and in the
third line, we changed the variables

√
σ 2 + μ2 → σ . �

4.3. The partial data problem

In this subsection, we study the fractional exponential Radon transform version of
Theorem 3.12. Let E ⊂ S1 be a set. As in Section 3.3, we define the projection operator by

LE,αf = F−α(χE(eθ−φ√
σ2+μ2,μ

)Fαf (σeθ )).

Here χE is the characteristic function of a set E, again.
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938 S. MOON

Theorem 4.5: Let f ∈ C∞(R2) have compact support and 0 < |α| < π . We have

LE,αf (x) = (4π)−1|cscα|I−γ
α [T#

−μ,αI
γ−1
α (Tμ,α,Ef )](x),

where Tμ,α,Ef (eθ , s) = χE(eθ )Tμ,αf (eθ , s).

Proof: By (4.6), we have

χE(eθ )Fαf (σeθ+φ√
σ2+μ2,μ

) = CαχE(eθ )Fα(Tμ,αf )(eθ ,
√

σ 2 + μ2)

= CαFα(Tμ,α,Ef )(eθ ,
√

σ 2 + μ2). (4.7)

Together with the inverse fractional Fourier transform, we have to

IγαLE,αf (x) = (C−α)2
∫

R2
Fα(IγαLE,αf )(ξ) e−i2−1(|x|2+|ξ |2) cotα+ix·ξ cscα dξ

= (C−α)2
∫
S1

∫ ∞

0
Fα(IγαLE,αf )(σeθ )

× e−i2−1(|x|2+σ 2) cotα+ix·σeθ cscα|σ | dσ dS(eθ ),

where in the second equality, we changed the variables ξ → σeθ . As in the proof of
Theorem 3.12, an integrand function is even with respect to (σ , eθ ) and thus we have

IγαLE,αf (x) = 2−1(C−α)2
∫
S1

∫
R

Fαf (σeθ )χE(eθ−φ√
σ2+μ2,μ

)

× e−i2−1(|x|2+σ 2) cotα+ix·σeθ cscα|σ |1−γ dσ dS(eθ )

= 2−1(C−α)2
∫
S1

∫
R

Fαf (σeθ+φ√
σ2+μ2,μ

)χE(eθ )

× e
−i2−1(|x|2+σ 2) cotα+ix·σeθ+φ√

σ2+μ2,μ
cscα|σ |1−γ dσ dS(eθ ),

where in the last equality, we used Lemma 4.3. Together with (4.7), we have

IγαLE,αf (x) = 2−1(C−α)2Cα

∫
S1

∫
R

|σ |1−γFα(Tμ,α,Ef )(eθ ,
√

σ 2 + μ2)

× e
−i2−1(|x|2+σ 2) cotα+ix·σeθ+φ√

σ2+μ2,μ
cscα

dσ dS(eθ )

= 2−1(C−α)2Cα

∫
S1

∫
|σ |>|μ|

|σ |(σ 2 − μ2)−γ /2Fα(Tμ,α,Ef )(eθ , σ)

× e−i2−1(|x|2+σ 2−μ2) cotα+ix·
√

σ 2−μ2eθ+φσ ,μ cscα dσ dS(eθ )

= (4π)−1|cscα|
∫
S1
Iγ−1
μ,α (Tμ,α,Ef )(eθ , x · eθ ) e−i2−1(|x|2−(x·eθ )2−μ2) cotα

× e−μx·e⊥
θ
cscα dS(eθ ),

where in third line, we used the change of variables
√

σ 2 + μ2 → σ and in the last line,
we used the identity

√
σ 2 − μ2eθ+φσ ,μ = σeθ + iμe⊥θ . �
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