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theorem and the fractional Fourier transform, has many potential Accepted 5 October 2017

applications in optics and the pattern-recognition field. Here we
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1. Introduction

The fractional Fourier transform was first introduced in the 1980s in a purely abstract
way as a novel method of solving the Schrédinger equation under various conditions
[1,2]. However, this fractional Fourier transform had not brought much attention until
Mendlovic and Ozaktas physically interpreted it with relation to quadratic graded-index
media (GRIN media) in [3]. After that, many properties and optical implementations of the
fractional Fourier transform were studied in [4-10]. (In [10], the authors called the frac-
tional Fourier transform the Radon-Wigner transform and showed its many applications
in optics.) Recently, application to image reconstruction in MRI was suggested in [11].
The Radon transform is also a promising tool in optical signal-processing systems and is
very related to the Fourier transform. Using the Fourier slice theorem, the two-dimensional
fractional Radon transform was first introduced by Zalevsky and Mendlovic [12] in 1996.
They mentioned its basic properties such as linearity, rotation invariance, shift, and the
Fourier slice theorem, and its many applications in optics as well as the pattern-recognition
field. In particular, in [13] its possible applications were illustrated: the minimization of
the mean-square error obtained after filtering non-stationary signals is directly related to
the fractional Radon transform. In [14], the n-dimensional fractional Radon transform
was introduced and its inversion formula was derived. Here we study many properties
of the fractional Radon transform using the existing results for the regular Radon trans-
form (see, e.g. [15-17]). Also, we introduce the fractional X-ray transform and present its
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inversion formula and stability estimates. Lastly, we introduce the fractional exponential
Radon transform and derive its inversion.

In Section 2, we briefly introduce the fractional Fourier transform of order « and its
basic properties. In Section 3, the fractional Radon and X-ray transforms are defined and
their elementary properties are studied. Section 3.1 is devoted to the inversion formulas
which is similar to that for the regular Radon and X-ray transforms in [17, Theorems 2.1,
2.2, and 2.3 in Chapter II]. In Section 3.2, we show that taking a certain linear operator
on the fractional Radon transform is an isometry on the new space with the defined norm
based on the fractional Fourier transform and discuss stability estimates. In Section 3.3, we
study the uniqueness and reconstruction for a limited data and describe the range condi-
tions. Section 4 is devoted to the introduction and inversion of the fractional exponential
Radon transform.

2. Preliminary
For a € R and an integrable function f, the fractional Fourier transform Ff of f of order
o is defined by

(C)" [ €2 EPH cota—igxcscdf(yy dx  if o is not a multiple of 77,

_ Rn
Faf €)= (&) if o is a multiple of 27,
f(=%§) if @ + 7r is a multiple of 27,

(2.1)
<1 — icotot)l/2
Co=—— .
2

Clearly, 75 »f = Ff isthe regular Fourier transform of f. Many properties of the fractional
Fourier transform were introduced in [1,4,7-9]:

where

e Linearity: Fo[c1fi(xX) + c22(x)]1(§) = c1Fofi(§) + c2Fofa(§).
o Inverse: F_oFof =f.

e Parseval identity:

/R foolgo)dx = /R Fuf §)[Fug®)]7dE, (22)
where z~ is the complex conjugate of the complex number z.
Notice that
(Co) " Fof (§) = (2m)"/2 &2 TP cote pel2 I ot f oy g escar). (2.3)

Let S(R") be the Schwartz space consisting of C* functions which, together with all their
partial derivatives, vanish at infinity faster than any power of |x|.

Theorem 2.1 (Theorem 3.1 in [1]): The fractional Fourier transform F is homeomotr-
phism on the Schwartz space S(R") with inverse F_.



Downloaded by [Kyungpook National University] at 21:55 08 January 2018

INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS ‘ 925

3. The fractional Radon and X-ray transforms

For 0 < |a| < 7, we define the fractional Radon transform R, and the fractional X-ray
transform X,, by

Rotf(e()a s) = /Lf(seg + 1) eiz_lh'\z cota o4
o
= f(X) eiZ*l(\X\Z_SZ) cotaa(ee X — S) dx, (31)
R

where 8 is the one-dimensional distribution function [14] and ey € S"~! is the unit vector,
and

Xof (eg,y) = /f(reg +vy) ei2 'Irl*eota g fory € ep.
R

When o = /2, R,f and X,f are the regular Radon and X-ray transforms, respectively.
Notice that R, f is even, i.e. R,f(eg,s) = Ryf(—ep, —s) and

Raf(e0>5) — efiz_ls2 cot(xR(eiZ_llxl2 cotaf(x))(eo,s)’ (3.2)

onf(CO» y) — efi2_1|y|2 cotozX(eiZ_1 |x|2 COtaf(X))(eg,y). (3.3)

Also, we have for any ey € S with ey L e,

Rof (ew,s) = / Xof (eg,y) dy,

yeej',ye,,,:s
like the regular Radon and X-ray transforms (see [17, Equation(1.1) on the p.10]).
Theorem 3.1: Forf € S(R") and 0 < || < 7, we have

Fus(Raf)(eg,0) = (Co)' " Fof (cep),
FoyXaf)(eg,m) = (Co) ' Fuf (), 1€ ep,

where Fys and Fyy are the one-dimensional and n—I1-dimensional fractional Fourier
transform operators with respect to the variable s and y, respectively.

In fact, the fractional Radon transform was defined based on Theorem 3.1 [12,14].

Proof: Taking the fractional Fourier transform of R, f with respect to s, we have

fa,s(Raf)(eo,O') = Ca/ ei2*1((72+|x|2) cota—ix-ego cscaf(x) dx.

Rl’l

Definition (2.1) of the fractional Fourier transform of f completes our proof.



Downloaded by [Kyungpook National University] at 21:55 08 January 2018

926 (&) S.MOON

Similarly, we have

Fol,y(Xaf)(eO)n) — C:;—l /L ei2_1(|rl|2+|y‘2) COtOl—iﬂ‘YCSCO(Xaf(teo +y) dY

€

_ i9—1 2 2 i i2- 11712
— CZ 1‘/‘L e12 (In|*+1yl?) cota—in-ycscor /f(feo +Y) 612 |T|* cotar dr dy
€ R

— Cn—l/ eizfl(|”|2+|x|2)cota—in~xcscaf(x) dX,
(o4
n

where in the last line, we changed the variables x =y + tey so that |x|? = |y|> + |7|%.
Again, definition (2.1) completes our proof. |

If f € S(R"), then eiTl'X'zc"t"‘f € S(R™) and thus R,f is in the Schwartz class on
§"~1 x R defined by restricting the functions in S(R"*1) to $"~! x R.
Now we introduce the backprojection operators RY, and X7, by

Rzg(x) = / lg(eo,x . eo)e—izfl(\x\Z—(eo-x)Z)cota dS(ey),
Nos

Xa8(x) = /S | glep ey (x)) ™ 0070t dS(ey).

for g € C*°(S""! x R) or g € C®(T) with compact support. Here T = {(eg,y) : €g €
Slye e@L}, Ee, is the orthogonal projection on ej- and dS(ep) is the standard area mea-
sure on the unit sphere in R™. Then RY, and X/, are the dual operators to R, and Xy,
respectively. In fact, for g € C*°(S"! x R) and f € C*°(R") with compact support, we
have

A;/S”1g(ea,S)[Raf(eo,S)]_dS(eo)ds
_ / / 2(enss) / (] ~em2 (= cotase) x5 dx dS(eg) ds
R Jgn-1 Rr
= /R RE®[f0]dx,
where z™ is the complex conjugate of the complex number z, again. Similarly, we can show
/Snl /e; g(ep,y) [Xof (e, y)]” dy dS(ep) = A.v X g(x)[f(x)] " dx.
Notice that

Rzg(x) — e—1271|X|2 COtaR#(e127152 COtOtg)(X)’ (34)

ng(x) _ e—i2*1|x|2 cotaX#(ei2*1|y|2 cotozg)(x)) (3.5)

where R* = R /» and X=X /2 are the backprojection operators of the regular Radon
and X-ray transforms, respectively.
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Proposition 3.2: Forg € S(S" ! x R) and 0 < |a| < 7, we have

Fou(REQ)(E) = (Co) €I ( wg(é' |§|)+fa,sg< é| |§|))

This proof is similar to the proof of Theorem 1.4 in Chapter 1 in [17].

3.1. Inversion formulas

For y < n, we define the linear operator 1 by

FaZ (&) = 1§77 Fof (§). (3.6)

Forf € SR"), Fy (I f)(g) |E|TV Fof(§) € L'(R™), hence [ fmakes sense. When o =
7/2, I, o = I” is the regular Riesz potential.

Lemma 3.3: Letf € S(R") and 0 < |a| < . For y < n, we have
lesca|V IV (eiz_llxlzcowf)(x) = eiz_llx‘zcowlgf(xl
Proof: Taking the Fourier transform of I” (e2 ' IxI” cote £) (x) yields
FllescalV IV (2 X cotep)) (g csca) = |77 Fle X tef](g csca)

= (1) (Co) e B g T Ff()
= m) "G " e R 11 ()] 6)
— .7-"[61271 Ix? CO“"Ig[’f(x)] (& csca),

where in the second and fourth equalities, we used the identity (2.3). |

Theorem 3.4: Letf € S(R") and 0 < |a| < 7. For y < n, we have

fx) =271@m) " esca|" I Y RET T Ry )] (%), (3.7)
-1
fx) = (|237::)2| lesca|[IY X211 (Xo )] (%). (3.8)

When y = 0, (3.7) becomes
fx) =271m)!  esca| R (1 (R )] ()

o0
= (27r)_”|cscal”/ / / (Raf) (g, s)0" !
rRJo Jsr1
x ei2_1(52—\x\2) cota—ia(s—x-eg)cscads(eo) do dS,
which is equivalent to (33) derived in [14].

Proof: We notice that for y < n,

fx) =2"'en)! "IV R IV TIRf (x) (3.9)
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(see [17, Theorem 2.1 in Chapter II]). Together with (3.2), we have

fx) = 2—1(27T)1—n e—i2’l|x|2 cota j—y [R#Iy—n+1(e12*152 cotaRaf)](X)' (3.10)
By Lemma 3.3 and (3.4), we have

f(x) — 271 (27”,)17}1 |CSC a|7}/+n*1 671271|X|2 cota [If)/R#61271$2 COt(XI()x/*ﬂ+1 (Ro(f)] (X)
— 271(2n)17n|csca|7}/+n71 e712—1|x|2 cota [Ify e12_1|x|2 cotaRzI‘)x/fn+l(Raf)](x)

=27'2m) ! Mesca|T L Y RED T (R )] ().

For the second inversion formula, we do the above process with (3.3), (3.5), and

2 —1
f(x) = (|5722| [I_VX#IV_I(Xf)](x) (see [17, Theorem 2.1 in Chapter II])
instead of (3.2), (3.4) and (3.9), respectively. [ |

From the inversion formula in Theorem 3.4, we obtain the following version of the
Plancherel formula:

. |cscor |1
©2(2m)n-!

|n—l

/R JlgoTdx /R R R MIg] dx

|csc o

= W/sn—l /RII”(Raf)(eg,s)[Rag(eg,s)]dst(eg).

Here in the last line, we used the definition of RY, and the such formula for the regular
Radon transform is derived in [16]. Similarly, we obtain

@m)~!
|72

2 -1
lescal [ [ 0ty agten ] dydsteo)
%

/Rnf(x)[g(x)]dx: |csca|/Rn erl(Xaf)(x)[g(x)]fdx

From (3.10) with y = 0 and I' ™" = (=1)"~"D/2A("=D/2 '\ye have the following obser-
vation: For n odd, the problem of reconstructing a function from the fractional Radon
transform is still local, like the regular Radon transform case. Here ‘local’ means that the
function is determined at a point by the fractional Radon transform on a neighbourhood
of that point.

Let us expand f and g, = R,f in spherical harmonics:

oo N(nl) oo N(n,l)
f@ =" fulxDYu/1xD),  galesss) =D D guik(s) Yic(ep),
I=0 k=0 I=0 k=0

where N(n,l) = Ql+n—2)(n+1—3)!/Il(n—2)!, N(n,0) =1, and Yji(ey) is the
spherical harmonics. For the regular Radon transform (i.e. @ = 7/2), we know the
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relations between fix and g /2, ik (see [17, Theorems 2.2 and 2.3 in Chapter II]):
® /2 (S 2 (n—3)/2
_ n— _
goa) = 15" [ () (1 - 72) Sty 2 dr,
N
= =22 (S
iy =) [ 6T (2) @ = O g ds
r r
where C}', 1 > —1/2, are the Gegenbauer polynomials of degree / and

_ DT (- 2)/2)

, Q) =—-n"L
. Tmoa @ W=7

c(n)

Together with (3.2), we have the following inversions:

Theorem 3.5: Let f € C*°(R") have compact support and 0 < |a| < 7. Then we have

S2

n—2, ,—i2~1s% cotar * (n—2)/2 (S (=2 27142 cotar n—2
guik(9) = I8 2 e ") (1-5 ety (2 r,
s

00
flk(") — c(n) e—12*1r2 cota/ Cl(n—Z)/Z (;) (52 _ rz)(n—3)/2asn—1[e12 132 cotozga)lk](s) ds.

r

3.2. Isometry and stability estimates

Let L*(R") and L*>(S""! x R) be the regular L?-spaces. For y > 0, let HY R") = {f
L*R") : Ifllay < o0} and Hy (S" ! x R) = {g € L2(S" ! x R) : ||glla,y < 00} be the
collections of L?-functions bounded by the following norms:

VI, = [ 1P+ I8Py d
R (3.11)

Iglz, = / / | Fasg (9> 0)[*(1 + |o]*)” do dS(ep).
s=1JR

In particular, || - ||4,0 is the regular L?-norm by Parseval identity (2.2) and || - ||» /2,y is the
regular Sobolev norm.

Let f € HY (R"). Then F,f is a L>-function with weight (1 4 |&|?)?. Thus there is a
sequence f, € S(R") such that | F_of, — f lla,y goes to zero. Set f, = F_ofn. Then f, €
S(R") by Theorem 2.1 and ||f,, — fl«,, goes to zero. Thus S(R") is dense in HY (R™) with
respect to ||fla,y -

Also, H, (R™) and HY(S" ! x R) are Hilbert spaces. In particular, Hg (R™) and
Hg (8"~! x RR) are the regular L? spaces and Hj};/z(R") and H;/Z(S”_1 x R) become the
regular Sobolev spaces.

Theorem 3.6: Fory > 0and 0 < |o| < 7, the mapping f — I;(n_l)/zRaf extends to an
isometry of Hy (R") into HY (S"~! x R), where H, ,(S" ! x R) = {g € HL(S" ! xR) :
g(ep,s) = g(—eg, —9)}.
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Proof: For f € S(R"), we start with I[fllé,y:

IFle, = fR NFf P+ [ED dE = /S fo | Fuf (@eg)*(1 4+ 627 0" do dS(eg)
=271 / / |Fof (@eg))*(1 + |o1?)Y |o|" ! do dS(eq)
=1 JR

27|y P Y / i / | Fas(Raf) (€9, 0) (1 + 101 o]~ do dS(eq)

~11C, |20 1)”1 (n=1)/2p f|| (3.12)

a,y’

where in the second equality, we changed the variables & — o eg and in the fourth equality,
we used Theorem 3.1. It remains to prove that the mapping is surjective. It is enough to
show thatifg € H} .(S"~! x R) satisfies

/S fR Fas8(e9:0) Faslly "~V *Raf1(e9,0) (1 + |o*)” do dS(eg) =0
forall f € S(R"), then g=0. By Theorem 3.1, we have
0= fs fR Fasg(eg,0)lo]| " V2 F,f(oep)(1 + |o]*)” do dS(ep)
— [ [ Aol VP E S e+ 10 do dsten

since F s is even by the evenness of g. Changing the variables ceg — &, we have

_ » D2 E v q
0 / £ g<|£| |§|) E7ODRE fE) (1 + £ dE.

Since f € S(R") is arbitrary, by Theorem 2.1 F,g(&/|€|, |E])|E|~ (= D/2 s equal to
zero almost everywhere and thus F,g(&/|&],1§|) and g are equal to zero almost
everywhere. |

Corollary 3.7: Fory > 0,0 < |a| < 7, and f € S(R"), we have
flley < 2721Cal" IRaf Ny +n—1y/2-
This corollary follows from (3.12) and two definitions (3.6) and (3.11) of I and || - llt,y -

Theorem 3.8: Let f € L*(R") have compact support in the unit ball. For y > 0 and 0 <
la| < 7, there is a constant Cy.y , such that | Ryflla,y+(n—1)/2 < Carynllf llay-
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Proof: Similar to (3.12), we have

IRaf g+ (n1y/2 = 21Cal " /R |Fof ©)*(1 + €177 T2 g1 dg

= 221G / + / | Faf §) (1 + E1)7 07021617 dg.
=1 JIgl=<1
(3.13)

The first term is bounded by 2*+1/2|C,, 21— |Lf||§,y, since |£]> > 271(1 + |£/?). Since

| Faf(E)] < |Cyl F@Idx < [CalIS" 12 If lleso < 1Ca IS 12| Il s

x| <1

where in the second inequality, we used the Holder inequality and the Parseval iden-
tity (2.2), the second term is estimated by

/|s| TSR+ ROV g
< |Cu?1S" 1 ( / 1+ |§|2>V+<”—“/2|£|1—"d§) IF1Z, - u
|§1<1

For y > 0 and T = {(eg,y) : ep € S”_l,y € ej-}, let HY (T) be the collections of L2-
functions bounded by the following norm:

Iy = [ [ Fosten P+ Py andsen)
4

Theorem 3.9: For each y > 0 and 0 < |a| < 7, there exist positive constants cy,,,n and
Ca,yn such that for f € C*°(R") with compact support in the unit ball,

Ca,y,n”f”a,y = ”Xotf”a,y+l/2 =< Ca,y,n”f||a,y~

Proof: We obtain

1Xaf 12,y = /S / | Py (Xaf) (eg mI* (1 + [n]*)" dn dS(ep)
]
= [ [ 1+ Py dndsten
€

— IS [ IFSOP+ 1P 181 dx

= (C) IS" NI AIL, (3.14)

where in the last line, we used the following equality: (please see [17, Equation (2.8) on

the p.190])
/ / f(y)dydey = [S"? / x| f (%) dx.
Sn—1 ej‘ R"

From here on we proceed exactly in the same way in the proof of Theorem 5.1in [17] . W
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3.3. The partial data problems and range description

Like the regular Radon transform, we have the following support theorem, which follows
from Theorem 3.5.

Corollary 3.10: Letf € C*°(R") have compact support and0 < |a| < 7. IfRyf(eg,s) =0
for |s| > M, then f(x) = 0 for |x| > M.

Combining (3.2) and Theorem 3.4 in Chapter IT in [17], we have the following theorem
which similar to Theorem 3.4 in Chapter IT in [17].

Proposition 3.11: Let 0 < |a| < 7 and A C S"~! be a set of directions such that no non-
trivial homogeneous polynomial vanishes on A. If f € C*°(R") with compact support and
Ryf(ep,s) =0 foreg € A, then f=0.

Now we study the reconstruction problem for limited data similar to [15]. Let E C Nt
be the open set symmetric with respect to the origin. We define the wedges and the projec-
tion operator by wg :=R-E = {oeg : g € E,o0 € R} and Pgf = F_y(xwpFaf). Here
Xwg is the characteristic function of a set wg.

Theorem 3.12: Let f € C*°(R") have compact support and 0 < || < . We have
Prof (0) = 271 @m) ! TMesco| " LY RGIL T (Raef)] (),

where Ry gf (€9, s) = xp(eg)Ryf (€9, ).
Proof: By Theorem 3.1, we have

fa(IgPE,af)(g) = |£|_VXWE(§)faf(§)

= ot (i) 7w (i)
(Co) & XE<|§| fa(ROlf) |§|>|E|

- (Ca)nillaiyfa(Ra,Ef) (%: |E|) . (3-15)

Together with the inverse fractional Fourier transform, we have
I/ Ppaf(x) = (C—o)" / Fa(PpaIlf)(§) e 12 (FHED cotartix esca g
Rn
*© —i271(|x|2+02) cot e +i -1
— (C—D[)n/ / fa(PE,aIgf)(Ue())e 1 (|x|“40“) co 0[+1X-U‘E§CSCO(|O,|VI do_ ds(eo),
sn=1.Jo

where in the last line, we changed the variables § — oep. Now the integrated function
is even with respect to (o, eg), that is, H(0,e9) = H(—o0, —eg) when H is the integrated
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function. Since for an even function H,

00 0
/ / H(o,ep) do dS(eg) = / / H(—o,—eg)do dS(ey),
s=1Jo sn=1 J—o0

we have
IgPE,af(x)

_ 271(C_a)n /Sn_I/R]_—a(PE’aIZf)(oeo)e12—1(x2+02)cota+ix.ae9 cscoz|o_|nfl do dS(eg)
=271(C)"(C)"! fs fR jo |7 F o (Ra,f) (9, 0)
« e—iZ’l(\x\Z-‘raz)cota-i—ix-aeg e gy dS(ep)
=27'm)! Mescal"! /S 1 (Raef ) (eg, x - eg) e (Moot gg gy,
where in the third line, we used (3.15). [ |

Now we describe the range of the fractional Radon transform using the range descrip-
tion of the regular Radon transform.

Theorem 3.13: Let f € S(R") and 0 < |a| < 7. If g€ S(S" ! xR) be even (ie.
gleg,s) = g(—eg,—s)), then form =0,1,2,...,

i9—12
f e12 s COtaRaf(eg,S)Sm ds
R

is a homogeneous polynomials of degree m. Also, if for each m = 0,1,2,...,

ih—12
/ e12 s cotozg(ee)s)sm ds
R

is a homogeneous polynomials of degree m, then there is f € S(R") such that g = R,f.

Proof: We compute
/ ei2—152 COtaRaf(eo,S)Sm ds = ./ / f(Seo + 1) eiz—l(lt\l-i-sl) cota gm - ds
R R Jey

— f(x) ei2*1|x|2 cota(x X eo)m dX,
Rn
where we put x = sep + 7.

On the other hand, by the range description of the regular Radon transform R derived
in [17, Theorem 4.2 in Chapter I1], there is F € S(R") such that el2”'s% cota g = RF. Setting
f(X) — efiZ_1|x|2 cotozF(X) gives f e S(Rn) and eiz_ls2 cot(xg(ea,s) — R[eiZ_llxl2 cotaf(x)]
(e, s) which is equivalent to g = R, f by (3.2). [ |
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4. The fractional exponential Radon transform

For f € S(R?) with compact support, the exponential Radon transform is defined by
T,.f(eq,s) = / e‘“"eéf(x)é(x ceg —s)dx = / e f(sep + tegl) dr,
R2 R

where 6 is the polar angle of the unit vector ey € S', that is, ey = (cos®,sin6), and
e9L = (—sin#,cosf) and p is a constant. Similar to definition (3.1) of the fractional
Radon transform, we can define the fractional exponential Radon transform T, .f,
0 < |a| < m by

Tuof(es,s) = /eLf(S% + teg‘) 2 (TP —p?) cotar guresca gy
0
_ / ) eiZ’l(lx\z—sz—uz)cotaa(ee X—5) e,ux~ej‘ e gy

R2

Like T,.f, T, of is not even. Also, we notice that T),f = T, »/2f and
Tyaf (e0,5) = e—i2_1(52+uz)c0taTﬂ Csca(eiZ_llxlzcotaf(x))(ee,s). (4.1)
Now we have the analogue of the Fourier slice theorem:
Theorem 4.1: Forf € S(R?) with compact support and 0 < |a| < 7, we have
Fas(Tiaf)(€9,0) = (Ca) ™ Fuf (0es + iptey).

Proof: Taking the fractional Fourier transform of T}, ,f with respect to s, we have

=12, 2 . =1 (11222
F., (T ey,0) = C e12 (0°+s%) cota—iso csca X elz (x2—s2—p?) cotar
a,s( M,af)( 9,0) a/l; sz( )
1
X el/-X.ee CSCO!(S(eQ CX — S) dx ds
— Ca/ eiZ*l(JZ_MZ-HxP)cota—ix‘egacsca e;ubeelcscaf(x) dx
R2
= (Co) " Fuf (ceq +ipey). n

In fact, the fractional exponential Radon transform is defined based on Theorem 4.1 as
the fractional Radon transform is defined using Theorem 3.1.

4.1. Inversion formula

To obtain the inversion formula for the fractional exponential Radon transform, we
introduce the dual operator Tfm, defined by

A 1L
Tz,ag(x) = /1 e—12 1(|x|2_(x»e9)2_u2) cota e[LX-ee Cscag(ee,x . 69) dS(eg)
S
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Then by simple computation, we can easily show

/ / Ty af (€0 9)g(es, )] dS(en) ds = / FOITE g1~ d
Also, like (3.4), we have
Tz’ag(x) — o2 (x| )cotaTzcsw(eizflsz cota o) (),

where T/, = T 1,7/2 18 the dual operator to Ty, 72 = Ty.

Theorem 4.2: Let f € S(R?) with compact support and 0 < || < 7. For y < 2, we have
&) = (4m) Mescal VT, 1L Ty of (66, 5)](x), (4.2)
where I, ), is the generalized Riesz potential

|O'|(O.2 - MZ)(V—I)/ZJfah(O.)’ |O'| > “’Ll)
0, otherwise.

Fallg (o) = {

When o = /2 and y = 0, (4.2) becomes the inversion formula for the exponential
Radon transform which is the same as the formula derived in [17, Theorem 6.1 in Chapter
IT]. To prove this theorem, we need the following lemma:

Lemma4.3: Let h: C — C be an analytic function with h(z) = h(z + 2m). Then we have
for a constant b € R

2w 2w
/ h(9)do = f h(6 + ib) d6.
0 0
Proof: By Cauchy’s integral theorem we have

/ h(z)dz =0, (4.3)
C

where C is a simple closed curve in C. Let us define C: [0,4] — C by

27 A if0<A<l,
2r +b(A—1Di ifl <X <2,
2r(3—A)+bi if2 <X <3,
b4 —21)i if3 <A <4

Ch) =

By 2 -periodicity of h, we have

2 4
/ h(z)dz="bi [ hQ2m 4+ b(A — 1i)dr = bi/ h(b(4 — 1)i) dr
Cl1,2] 1 3

=— / h(z) dz.
C[3,4]
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Together with (4.3), we have
1
/ hQ2mA) dr = (271)—1/ h(z)dz = —(2m) 7},
0 Clo,1]

3
/ h(z)dz = / hQ2m (3 — A) + bi) dA,
C[2,3] 2
which is equivalent to our assertion. |
Now we are ready to prove Theorem 4.2.

Proof of Theorem 4.2: Let us start with the inverse fractional Fourier transform:

I(Jx/f(x) — (Cia)z /1;2 |§|—}/Faf(§) ei&-xcsca e—iZ*I(\x\z-HE\z) cota dg

9
— (C—a)Z/ f faf(aee)eiaegxcscot e—i2_1(|X|2+02) cot(xo_l—y dS(eg) do,
0 St

where in the last line, we changed the variables § — oeg. As in the proof of Theorem 3.12,
an integrand function is even with respect to (o, ep) and thus we have

I();f(x) — 2—1<c_a)2/ /1 faf(o_ee)eiaeg-xcsca e—i271(|x|2+0'2) COtOl|o_|1—y dS(CQ) do
RJS

_ 2—1(C_a)2/ faf( /o2 — Mzee) ei«/oz—pﬂeg-xcsca
lo|>|pu| /S

» eiizfl(lxl2+027uz) cot(x|0_|(0_2 _ 'UJZ)*}//Z dS(e@) do’ (44)

where in the last line, we changed the variables o — /o2 — u?. Let ¢y, =
(i/2) In[(o + n)/(c — w)]. Applying Lemma 4.3 to (4.4) and Theorem 4.1, Ig,’f(x)
becomes to be equal to

C [ [ Fuf(0T e, VT
lo|>|ul JS

o e_i2—1(|x|2+02_u,2) cota |U | (0—2 — 2)_)//2 ds(ee) dU

€p - XCSCo—UX- e Ccscuo
as(Tuaf)(eexa) em 0
4n|sma| /Sl _/|6>|ﬂ|

_in—1 2
% e 271 (x| 402 —u?) coter

lo|(a? — u?)77/? do dS(ep), (4.5)

since /o2 — u?(cos(0 + ¢o ), sin(@ + ¢5,)) = o€y + iuej. By the definition of I,
(4.5) becomes

I’'f(x) = (4n)_1|cscoc| /sl Igt’);lTu,af(eg,eg - X)

1112 (o V2 2 el
e 27 (|x|*—(eg-x)"—p )cotae Ux-eg csca dS(eg). [
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4.2. Stability estimates

In this subsection, we show that the problem of reconstructing from the fractional expo-
nential Radon transform is well-posed in the following sense: if f satisfying g = T}, of
is uniquely determined for any g belonging to a certain space, the function f depends
continuously on g.

Theorem 4.4: Fory > 0,0 < |¢| < 7, andf € S(R?), we have
”f”a,y = ICa| ”Tu.,af”a,y-i-l/Z-

When o = /2, we get the stability estimate of the regular exponential Radon
transform.

Proof: Notice that from Theorem 4.1, we have

Fas(Tuaf ) (€9, V/0% + 1?) = (Ca) ™' Fuf (Vo2 + n2en +inney)
= (Ca)_lfaf(deewmﬂ), (4.6)

where ¢ r = (/Do + 12+ /(o + 1 = )] = (/) nlo/ (0> +
2u* = 2uy/o? + p?)).

Similar to (3.12), let us consider |[f||§’y:
5 27 o0 5 5
_ Y
Wiy = [ [ 1S i sy DR+ b0Vl do 08

2 00

=[Cyl? f / | Fos(Tiaf) (€0, Vo2 + u2)*(1 + |o|») |o| do do
0 0
2w o0

=[Gyl f / | Fos(Tiuaf) (€0, 0) (1 + |V o2 — u2*) o] do df
0 1]

21
<GP /O /R Fas(Tuaf) (€0, 0) P (1 + o272 do a6

2 2
- |C0t| ”TM,(Xf”a,y—i-l/Z’

where in the first and second lines, we used Lemma 4.3 and (4.6), respectively, and in the
third line, we changed the variables \/o2 + u?> — o. |

4.3. The partial data problem

In this subsection, we study the fractional exponential Radon transform version of
Theorem 3.12. Let E C S! be a set. As in Section 3.3, we define the projection operator by

Liof = ffa(XE(697¢W‘M).7:af(069))-

Here xg is the characteristic function of a set E, again.
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Theorem 4.5: Letf € C™ (IR?) have compact support and 0 < || < 7. We have
Leof(x) = (4m)escal IV [T7, 10 (Tya )] (X),
where Ty o 5f (€9,5) = xE(€0) Taf (€95 5).
Proof: By (4.6), we have
XE(€) Fuf 0044 sy ) = Cyxe(eo) Fo(Taf)(es, Vo + 1i2)
= CoFa(Tpaif)(eo, Vo2 + ). (4.7)

Together with the inverse fractional Fourier transform, we have to

I Laf 0 = (C—o)? /R Fol} Laf)(§) e (XHER cotectixfesca g

o0
= (C_y)? / 1 f FoIl Lryf)(oey)
StJo
« e—izfl(\x\z-i-az)cotot-i—ix-(reg s |51 do dS(eq),

where in the second equality, we changed the variables § — oes. As in the proof of
Theorem 3.12, an integrand function is even with respect to (o, ep) and thus we have

I Lpaf(x) =27 1(C_y)? / /faf(aee)XE(ee —¢ )

2+M S

=12 2 X _
% e 27 (|x]*+07) cota+ix-oey csccx|0|1 Y do dS(eg)

=27C? [ [ A e s teten

7i2_1(|xlz+02) cota+ix-oegygy

csco
x e VoZiutin 0|1 do dS(ep),

where in the last equality, we used Lemma 4.3. Together with (4.7), we have

I Lpof(x) =27 1(C_p)?C, f / lo |17 Fo(Toa.5f) (€0, Vo2 + 112)
St JR

—12 L(x[*4+02) cota+ix-oegryp

csco
Volttutpu do dS(ep)
=2"1(C_o)*C, / / lo1(0% — u?) V2 Fo (Tyaef ) (€9, )
St Jo|>|ul
x e712_1(|x|2+0 —u?) cota+ix-A/02—p? €+go,u CSCY J oy dS(eg)
= (4m) " fesca / 13 (T i) (e, X - €9) €12 (X —xe) =t cota

L
X e*[/LX~e€ csco ds(ee)’

where in third line, we used the change of variables \/o2 + > — o and in the last line,
we used the identity /o2 — u?ep1g,, = oeg + ines. [ |
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